Search results for "Lebesgue covering dimension"

showing 4 items of 4 documents

2020

Abstract This paper is related to the problem of finding a good notion of rectifiability in sub-Riemannian geometry. In particular, we study which kind of results can be expected for smooth hypersurfaces in Carnot groups. Our main contribution will be a consequence of the following result: there exists a C ∞ -hypersurface S without characteristic points that has uncountably many pairwise non-isomorphic tangent groups on every positive-measure subset. The example is found in a Carnot group of topological dimension 8, it has Hausdorff dimension 12 and so we use on it the Hausdorff measure H 12 . As a consequence, we show that any Lipschitz map defined on a subset of a Carnot group of Hausdorf…

Pure mathematicsApplied MathematicsImage (category theory)010102 general mathematicsCarnot groupLipschitz continuity01 natural sciences010101 applied mathematicssymbols.namesakeHypersurfaceHausdorff dimensionsymbolsMathematics::Metric GeometryHausdorff measure0101 mathematicsLebesgue covering dimensionCarnot cycleAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Assouad dimension, Nagata dimension, and uniformly close metric tangents

2013

We study the Assouad dimension and the Nagata dimension of metric spaces. As a general result, we prove that the Nagata dimension of a metric space is always bounded from above by the Assouad dimension. Most of the paper is devoted to the study of when these metric dimensions of a metric space are locally given by the dimensions of its metric tangents. Having uniformly close tangents is not sufficient. What is needed in addition is either that the tangents have dimension with uniform constants independent from the point and the tangent, or that the tangents are unique. We will apply our results to equiregular subRiemannian manifolds and show that locally their Nagata dimension equals the to…

Pure mathematicssub-Riemannian manifoldsGeneral Mathematics54F45 (Primary) 53C23 54E35 53C17 (Secondary)01 natural sciencessymbols.namesakeMathematics - Geometric TopologyDimension (vector space)Mathematics - Metric Geometry0103 physical sciencesFOS: MathematicsMathematics (all)assouad dimensionMathematics::Metric GeometryPoint (geometry)0101 mathematicsMathematics010102 general mathematicsta111TangentMetric Geometry (math.MG)Geometric Topology (math.GT)16. Peace & justiceMetric dimensionAssouad dimension; Metric tangents; Nagata dimension; Sub-Riemannian manifolds; Mathematics (all)Metric spaceBounded functionNagata dimensionMetric (mathematics)symbols010307 mathematical physicsMathematics::Differential Geometrymetric tangentsLebesgue covering dimension
researchProduct

A note on topological dimension, Hausdorff measure, and rectifiability

2020

The purpose of this note is to record a consequence, for general metric spaces, of a recent result of David Bate. We prove the following fact: Let $X$ be a compact metric space of topological dimension $n$. Suppose that the $n$-dimensional Hausdorff measure of $X$, $\mathcal H^n(X)$, is finite. Suppose further that the lower n-density of the measure $\mathcal H^n$ is positive, $\mathcal H^n$-almost everywhere in $X$. Then $X$ contains an $n$-rectifiable subset of positive $\mathcal H^n$-measure. Moreover, the assumption on the lower density is unnecessary if one uses recently announced results of Cs\"ornyei-Jones.

Applied MathematicsGeneral Mathematics010102 general mathematicsMetric Geometry (math.MG)01 natural sciencesMeasure (mathematics)funktioteoriaCombinatoricsMetric spacesymbols.namesakeCompact spaceMathematics - Metric GeometryMathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicssymbolsHausdorff measuremittateoria010307 mathematical physics0101 mathematicsLebesgue covering dimensionMathematicsProceedings of the American Mathematical Society
researchProduct

An optimal extension of Marstrand?s plane-packing theorem

2003

We prove that if F is a subset of the 2-dimensional unit sphere in $\mathbb{R}^3$, with Hausdorff dimension strictly greater than 1, and E is a subset of $\mathbb{R}^3$ such that for each $e \in F$, E contains a plane perpendicular to the vector e, then E must have positive 3-dimensional Lebesgue measure.

Discrete mathematicsUnit spheresymbols.namesakePacking dimensionLebesgue measureGeneral MathematicsHausdorff dimensionsymbolsDimension functionHausdorff measureLebesgue covering dimensionEffective dimensionMathematicsArchiv der Mathematik
researchProduct